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A B S T R A C T

Background and Objectives: Computational modeling of soft tissue deformation is a fundamental issue for
engineering assistive medical procedures. However, existing methods are not suitable for online clinical scenes
as these methods are not efficient due to high computational cost and complexity.
Methods: A new Weighted Skinning and Cubature Integrated (WSC-integrated) order reduction method is
proposed for dynamic modeling of soft tissue deformation. The presented method includes two integrated-
based schemes for construction of sub-space and estimation of internal elastic forces: a weighted skinning
integrated scheme and a cubature integrated scheme. The weighted skinning integrated scheme derived from
handle-based reduced order method is adopted to construct a reduced-order sub-space, in which dynamics of
soft tissue are governed by low-order system equations. The cubature integrated scheme is adopted to estimate
internal elastic forces of soft tissue. The proposed method relies on integration schemes both in sub-space
construction and internal forces estimation instead of precomputation of soft tissue deformation snapshots,
making it possible to achieve efficient computation of soft tissue deformation.
Results: Compared to a finite element method in full-space for computing soft tissue deformation, the proposed
method has a relative root mean square error for strain–stress and volumetric responses is 4.27 % and 3.11
%, respectively, and for rotation-moment and volumetric responses is 2.15 % and 2.63 %, respectively. The
computation time of the proposed method achieve significant improvement (ranges from 37× to 54× ) with
proper choice of sample handles and elements. Simulation of left ventricle dynamics based on the proposed
method takes (21.81 ms) approximately 1/43 amount of computation time of the finite element method during
online stage, and difference between their results is negligible (with relative root mean square error of 2.4 %).
Conclusions: The simulation results and comparison validated that the proposed method presents higher
computational efficiency and comparable accuracy to the finite element method in full-space. The high degree
of computational efficiency and accuracy of the proposed method makes it suitable for online clinical scenes.
1. Introduction

Computational modeling of soft tissue deformation has been proven
to be an effective way for developments of clinical applications, such
as disease diagnosis [1,2], virtual surgery simulation [3,4] and surgical
navigation [5]. A high-resolution model with precise anatomical details
is expected to reveal physiological information and to predict treatment
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outcomes [6,7]. Simulation of soft tissue deformation with finite ele-
ment method (FEM) can achieve accurate results with multi physiology
and physics aspects but require a large amount of computational cost.
The order reduction method has been incorporated in order to reduce
the computational cost, where an inexpensive low-dimensional system
that approximates the original system is constructed in offline stage
and evaluated fast in online stage [8,9]. However, the existing order
vailable online 9 June 2023
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reduction methods depend on pre-computational snapshots of full-scale
solutions of soft tissue deformation, increasing the computational cost
and complexity. Therefore, how to achieve efficient dynamic modeling
of soft tissue deformation is still an open problem.

Numerous works have been proposed for dynamic modeling of soft
tissue deformation, including the finite element method and order re-
duction method. In the following, we review works related to dynamic
modeling of soft tissue deformation.

The finite element methods have been typically developed for dy-
namic modeling of soft tissue deformation for decades [10,11]. A
total Lagrangian explicit dynamics algorithm based on explicit time
integration is proposed in [12] for computing deformation of soft
tissue. In [13,14], deformation models using finite element method,
Mass–Spring System or other models, with explicit, semi-implicit or
implicit time integration, are used to calculate mechanical behaviors
of deformable objects. In addition, GPU-based implementation is also
incorporated to improve computational efficiency [15]. In our previous
works [16,17], soft tissue deformation is computed using an implicit
Euler method, which achieves relatively high computational efficiency
and accuracy. Whereas simulation of soft tissue deformation using finite
element methods with an implicit integration scheme achieve a high
degree of accuracy, it is computationally intensive and complexities
of soft tissue mechanics make it unsuitable for online oriented clinical
scenes.

The order reduction methods have been proposed to achieve effi-
cient and precise modeling of soft tissue deformation. A reduced order
model is constructed through two sequential stages [18], i.e., con-
struction of the reduced basis, and approximation of the nonlinear
term. In the first stage, a sub-space spanned with the basis matrix
of the state variable is constructed. The governing equation of the
nonlinear problem is projected into a low dimension sub-space with
a nonlinear term. After that, an approximation method is implemented
to calculate the nonlinear term. The order reduction method has been
widely used in the computational models of soft tissue deformation
due to its computational efficiency [19–22]. The Proper Orthogonal
Decomposition (POD) is one of the most popular methods to con-
struct the reduced basis in the first stage of order reduction technique.
In [19], the Proper Orthogonal Decomposition (POD) based order
reduction method with explicit time integration was presented for
surgical simulation. Yang et al. [23] developed the POD-based method
to estimate cardiac conductivity. These methods can achieve efficient
calculation of cardiac physiology, making them suitable for clinically
oriented applications. Rama et al. [9] proposed an order reduction
method called the Proper Orthogonal Decomposition with Interpolation
(PODI) to simulate the heart, which drastically reduces the computation
time. In the PODI-based approaches, the reduced basis is constructed
from a set of parameter-dependent solutions of the full-order model,
and the snapshots of the solution are approximated by minimizing
error with the selection of the most important modes. Several tech-
niques have been proposed to reduce the cost of evaluating nonlinear
terms in order reduction methods, including the Empirical Interpolation
Method (EIM). Chaturantabut et al. [24] proposed a discrete variant
of EIM, known as Discrete Empirical Interpolation Method (DEIM),
to effectively overcome the complexity of evaluating the nonlinear
terms. Bonomi et al. [25] proposed a reduced framework based on
matrix DEIM technique to simulate the cardiac contraction in which
the coupled electro-mechanical problem was solved efficiently. Sipp
et al. [26] compare the POD-Galerkin and POD-DEIM methods for
nonlinear model reduction. The stability, accuracy and robustness,
and appropriate quantitative measures of order reduction models are
introduced and compared. Pagani et al. [27] propose to incorporate
a 𝑘-means clustering in the state space of the snapshots into the
approximation of the nonlinear terms in the order reduction method.

In the simulation of soft tissue, finite element method with hyper-
elastic material model and implicit time integration scheme was usually
2

adopted to achieve relative high degree of accuracy, and effects were m
made to improve computational efficiency. In order reduced tech-
niques, the main idea is to find a proper basis to project the dynamic
system from a sub-space to the full-space. In POD-based methods of
sub-space construction, basics functions are extracted from snapshots of
soft tissue deformation. These methods have been successfully applied
in computational model of soft tissue deformation, however, the main
drawbacks are intensive offline computational cost and complexity.
In EIM-based methods of nonlinear term estimation, pre-computation
of soft tissue deformation with multi complex physiology and physics
aspects increases the offline computational cost and complexity. More-
over, generation of representative snapshots of soft tissue deformation
is a challenging task since environments and external manipulation
applied on the soft tissue are usually complex. The handle-based re-
duced order models [28–30] provide a way to efficiently construct
low-order subspace without the need for pre-computation of snapshots.
Recent improvements are also presented to handle contact deformation
using a learn-based method [31,32]. These methods also provide an
opportunity for efficiently handling interaction between organs and
surgical instruments in medical simulation. Hence, how to reduce
computational cost and complexity is the major challenge in order
reduction method for dynamic modeling of soft tissue deformation.

In this paper, a new Weighted Skinning and Cubature Integrated
(WSC-integrated) order reduction method for dynamic modeling of
soft tissue deformation is proposed. A weighted skinning integrated
scheme is adopted to interpolate dynamic characterization of soft tis-
sue, through which a sub-space is constructed conveniently. Internal
elastic forces of soft tissue in reduced order sub-space are approximated
using a cubature integrated scheme. Dynamics of soft tissue in this
sub-space are then transformed back into the full-space. Simulation
experiments and comparison show that the proposed order reduc-
tion method achieves efficient and accurate computation of soft tissue
deformation.

The novelty of the presented work is to introduce WSC-integrated
scheme into development of the new order reduction method for dy-
namic modeling of soft tissue deformation. The weighted skinning in-
tegrated scheme derived from handle-based reduced order method [33]
is adopted to construct the sub-space, which provides accurate and
convenient interpolation of soft tissue dynamics. In the meantime, a
cubature integrated scheme [34] is adopted to calculate the elastic
forces of soft tissue in the reduced order sub-space. The proposed
method relies on integration schemes in both sub-space construction
and internal forces estimation instead of pre-computed snapshots of soft
tissue deformation. The proposed method is exempted from precomput-
ing snapshots of soft tissue deformation, making it straightforward and
easy to implement. This work provides efficient and accurate dynamic
modeling of soft tissue deformation, which can further be adapted for
patient-specific computation through parameters estimation. However,
the selection strategy of samples for handles and elements could be
further investigated.

The remainder of this paper is organized as follows. In Section 2,
the concept of dynamic modeling of soft tissue deformation is briefly
introduced. In Section 2.2, a new WSC-integrated order reduction
method was proposed for dynamic modeling soft tissue deformation.
Implementation and simulation results are shown in Section 3. A brief
discussion is presented in Section 4.

2. Methods

2.1. Mechanical preliminary

In the presented dynamic modeling of soft tissue deformation, an
finite element method is used to govern mechanical response of soft
tissue. Deformation of soft tissue can be formulated as a function
𝜙 ∶ R3 → R3, which maps the reference configuration to the current
onfiguration. Material points of soft tissue in its reference state �⃗� ∈ R3

⃗ 3
ove to the corresponding current state �⃗� = 𝜙(𝑋) ∈ R under the
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effects of physiological functions and external loads. The deformation
gradient is used to characterize relative deformation of soft tissue, as

𝑭 =
𝜕𝜙(�⃗�)

𝜕�⃗�
(1)

The first Piola–Kirchhoff stress tensor can be obtained from derivation
of strain energy function, as

𝑷 = 𝜕𝑊
𝜕𝑪

𝜕𝑪
𝜕𝑭

, 𝑪 = 𝑭 𝑇𝑭 (2)

here 𝑪 is the right Cauchy Green tensor, and the strain energy
unction 𝑊 is integration of energy density throughout the problem
omain, as

(�⃗�; �⃗�) = ∫𝛺
𝛹 (𝑭 )𝑑𝛺 (3)

In the presented work, a Mooney–Rivlin model is used to charac-
erize elastic deformation of soft tissue. Other kinds of material models
an also be incorporated. The strain energy density of Mooney–Rivlin
aterial is as

(𝐼1, 𝐼2) =
1
2
𝜇1[𝐼1 − 3] − 1

2
𝜇2[𝐼2 − 3] (4)

where invariants of the right Cauchy Green tensor are given by

𝐼1 = 𝑡𝑟𝑪 , 𝐼2 =
1
2
(𝑡𝑟2𝑪 − 𝑡𝑟𝑪2) (5)

In the dynamics model with finite element method, the geometry of
oft tissue is discretized into tetrahedral meshes. Elastic forces gener-
ted in each tetrahedral mesh is calculated according the mechanical
odel as described in Section 2.1. Let 𝒙 = (�⃗�0,… , �⃗�𝑛−1) ∈ R𝑛×3

enotes position of vertices of the geometric mesh, where 𝑛 is number
f vertices. Since the elastic force is the negative gradient of the strain
nergy as 𝒇 = −𝜕𝑊 ∕𝜕𝒙, evolution of displacement 𝒙 of mesh nodes is
overned by the following equation:

�̈� = 𝒇 𝑒 + 𝒇 𝑎 (6)

here 𝑴 is the mass matrices, 𝒇 𝑒 is the elastic forces resulting from
lastic deformation of soft tissue, and 𝒇 𝑎 is external load applied on
oft tissue. In the presented work, the finite element method with
n implicit time integration scheme is used to simulate soft tissue
eformation. More details of the finite element method and the implicit
ime integration scheme have been presented in existing works [35,36].

.2. WSC-integrated order reduction method

So far we have described dynamic modeling of soft tissue deforma-
ion using an finite element method in full-space. It allows to calculate
he deformation of soft tissue with high degree of accuracy. However,
his simulation method is computationally expensive, which limits
ts usage in online clinical scenes and requires high computational
erformance.

In the presented work, a new Weighted Skinning and Cubature
ntegrated (WSC-integrated) order reduced method is proposed to im-
rove computational efficiency through reducing degrees of freedom in
he dynamic modeling of soft tissue deformation, as stated in Eq. (6).
he vertex positions 𝒙 ∈ R𝑛×3 are represented in a reduced set of
oordinates 𝒒 ∈ R4𝑘×3, where an affine transform is used to project
he coordinates from a sub-space to the full-space as

= 𝑼𝒒 (7)

lso the sub-space dimensions 4𝑘 ≪ 𝑛. The Eq. (6) can be rewrite as

̃ �̈� = �̃� 𝑒 + �̃� 𝑏 (8)

here a tilde denotes reduced variables projected into the chosen sub-
pace: �̃� = 𝑼𝑇𝑴𝑼 , and �̃� 𝑒 = 𝑼𝑇 𝒇 𝑒(𝑼𝒒), �̃� 𝑎 = 𝑼𝑇 𝒇 𝑎(𝑼𝒒) are mass
atrix, elastic force, and external force in the reduced sub-space. In
3

he deformation model with tetrahedral element, forces can be written
s a sum of contributions over mesh elements  :

�̃� =
∑

𝑒∈
𝑈𝑇
𝑒 𝒇 𝑒 (9)

where 𝒇 𝑒 is a 12-vector of forces for single tetrahedral element and 𝑈𝑒
is a 12 × 4𝑘 sub-block of 𝑈 for the respective element vertex.

Next, a new sub-space is constructed based on a weighted skinning
integrated scheme and a cubature integrated scheme is incorporated
to estimate internal elastic forces. The proposed method relies on
integration schemes both in sub-space construction and internal elastic
forces estimation instead of precomputed snapshots of soft tissue de-
formation. Since soft tissue dynamics are governed by a subspace with
reduced coordinates, the computation burden of soft tissue deformation
is significantly reduced.

2.3. Sub-space construction based on weighted skinning integrated scheme

In the proposed order reduction method, a set of skinning weights
are used to construct a sub-space for the model order reduction, similar
to the sub-space used in [33]. The furthest point sampling algorithm
is incorporated to choose 𝑘 sample handles 𝒔𝑗 that distributes ap-
proximately equidistant over the mesh. Then radial basis functions
around the handles are used to calculate preliminary weights for each
vertex 𝑖 with respect to the 𝑘 handle. Specifically, the weights are
defined as �̃�𝑖 = (𝐵𝒔1 ,𝑟(𝒒𝑖),… , 𝐵𝒔𝑘 ,𝑟(𝒒𝑖)), where 𝑟 is a radius and 𝐵𝒚,𝑟(𝒙) =
𝑏𝑟(𝑑(𝒙 − 𝒚)) is a scalar function related to mesh vertices. Finally, a
normalization procedure is implemented as 𝒘𝑖 = �̃�𝑖 ⋅ (1.∕

∑

𝑗 �̃�
𝑗
𝑖 ) to

ensure reproducibility of the rest shape.
In the skinning transformation, the position of mesh vertices is

obtained via

⎛

⎜

⎜

⎜

⎝

𝒙𝑥𝑖
𝒙𝑦𝑖
𝒙𝑧𝑖

⎞

⎟

⎟

⎟

⎠

=
𝑘
∑

𝑗=0
𝑤𝑗

𝑖𝑨𝑗

⎛

⎜

⎜

⎜

⎜

⎜

⎝

�̂�𝑥𝑖
�̂�𝑦𝑖
�̂�𝑧𝑖
1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(10)

where 𝑨𝑗 is 𝑘 chosen as affine transformations (3 × 4 matrices) for each
handle, 𝑤𝑗

𝑖 is weight and �̂� ∈ R𝑛×3 is rest position of the mesh vertices.
From this, we can deduce a sub-space matrix

𝑼 = (𝑈1|⋯ |𝑈𝑘) (11)

𝑈𝑗 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑤𝑗
0 �̂�𝑥0 ⋅𝑤

𝑗
0 �̂�𝑦0 ⋅𝑤

𝑗
0 �̂�𝑧0 ⋅𝑤

𝑗
0

𝑤𝑗
1 �̂�𝑥1 ⋅𝑤

𝑗
1 �̂�𝑦1 ⋅𝑤

𝑗
1 �̂�𝑧1 ⋅𝑤

𝑗
1

⋯

𝑤𝑗
𝑛 �̂�𝑥𝑛 ⋅𝑤

𝑗
𝑛 �̂�𝑦𝑛 ⋅𝑤

𝑗
𝑛 �̂�𝑧𝑛 ⋅𝑤

𝑗
𝑛

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(12)

nd entries of the affine transformations can be interpreted as sub-space
oordinates

= (𝑨𝑇
0 ,… ,𝑨𝑇

𝑘−1)
𝑇 (13)

hen, the transformation can be concisely written as described in
q. (7). After that, we can project the coordinates from the sub-space
o its full-space in dynamic modeling of soft tissue deformation.

.4. Internal force estimation based on Cubature integrated scheme

In the presented work, a cubature integrated scheme is incorporated
o evaluate the internal elastic forces, where the forces are projected
rom the sub-space to the full-space. The scheme works by observing
hat elastic strain energy 𝐸(𝒒) and internal forces �̃� , for reduced
oordinates 𝒒, are obtained by integrating the energy density 𝛹 (𝑋, 𝒒),
nd its gradient over the entire mesh, as

̃ =
𝜕𝛹 (𝑋, 𝒒)

𝑑𝛺 (14)
∫𝛺 𝜕𝒒
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Fig. 1. The results of both normal deflection and volumetric responses of the soft matter to uniaxial tensile and twist tests. Both results of the finite element method in full-space
and our method are presented. (a) Strain–stress relationship. (b) Evolution of the moment with respect to the rotation angle. (c) Volumetric responses with respect to the strain.
(d) Volumetric responses with respect to the rotation angle.
As proposed in [37], we approximate the integration in Eq. (14) using a
𝑘′-elements cubature integrated scheme, instead of evaluating �̃� using
the exact formula �̃� = 𝑼𝑇 𝒇 (𝑼𝒒). To achieve this, we determine 𝑘′

sampling elements, such that

�̃� (𝒒) = ∫𝛺
𝜕𝛹 (𝑋, 𝒒)

𝜕𝒒
𝑑𝛺 ≈

𝑘′
∑

𝑖=1
𝛼𝑖𝒈(𝑋𝑖, 𝒒) (15)

where 𝛼𝑖 ∈ R is a scalar cubature weight applied to sample 𝑖, and
𝒈(𝑋𝑖, 𝒒) is ‘‘reduced-force density’’ as

𝒈(𝑋𝑖, 𝒒) = −∇𝒒𝛹 (𝑋, 𝒒) = 𝑈𝑇
𝑖 𝒇 𝑖(𝑈𝑖𝒒) (16)

where 𝑈𝑖 ∈ R12×4𝑘 is rows of 𝑈 that correspond to vertices of tetra-
hedron 𝑖, and 𝒇 𝑖 is material forces on vertices of the 𝑖th tetrahedron
that is calculated using element-sampled version of the material force
function.

Sampling elements. During the construction of internal force sub-space,
𝑘′ approximately equidistant sample elements on the geometrical mesh
are chosen. After that, weight function 𝛼𝑗 with a limited support do-
main around each of the samples is constructed. Radial basis functions
around the sampled element are then used to calculate the initial
weights for each tetrahedrons and each of the 𝑘′ sample. Since linear
tetrahedral elements are used to discretize the geometrical mesh of
soft tissues in the discrete cubature integrated scheme, force density
remains constant over each element.

Computing weights. Given a set of sampled tetrahedrons, the weight
functions are then interpolated to calculate the cubature weights 𝜶 =
(𝛼0,… , 𝛼𝑖,… , 𝛼𝑘′ ), and then normalized to sum to one of each element.
Similar to [34], we construct an interpolation scheme for the elastic en-
ergy based on biharmonic generalized barycentric coordinates (BGBC).
The cubature weights are derived by integrating the basis functions of
the interpolation scheme. The implicit assumption in this construction
is that the transformations of the soft tissue deformation vary smoothly
across the mesh. In the BGBC based interpolation, the elastic energy
density 𝛹 (𝑿) can be integrated as

𝛹 (𝑿) =
∑

𝛼𝑗 (𝑿)𝛹 (𝑿𝑖) (17)
4

𝑗

The full energy 𝑊 can be computed by integrating the interpolated
energy density on the entire reference shape:

𝑊 = ∫𝛺

∑

𝑗
𝛼𝑗 (𝑿)𝛹 (𝑿𝑗 )𝑑𝛺 =

∑

𝑗

(

∫𝛺
𝛼𝑗 (𝑿)𝑑𝛺

)

𝛹 (𝑿𝑗 ) (18)

Based on the integration scheme above, the cubature weights can be
obtained by integrating the BGBC on the reference configuration, as
following:

𝑤𝑗 = ∫𝛺
𝛼𝑗 (𝑿)𝑑𝛺 (19)

It is able to approximate the energy well and is also relatively fast.

3. Results

In this section, we will evaluate the accuracy and efficiency of the
proposed method. We computed the deformation of soft tissue using
the proposed order reduction method and compared the results with
an finite element method [38,39] in full-space using implicit time
stepping. The simulation experiments are implemented using a C++
program. In order to demonstrate the potential usage of the proposed
method, simulation of left ventricle dynamics is presented. We perform
the simulation on Intel(R) Xeon(R) E5-1603 v3 CPU.

3.1. Accuracy comparison and analysis

Simulation experiments of a cubical model with uniaxial tensile and
twist tests are conducted. Boundary condition is applied by prescribing
displacements on the selected vertices. At the end of each simulation
step, the vertices at the left end of the cubical model are fixed by setting
displacements to zero, tensile and twist are applied to the cubical model
by setting the displacements of vertices at the right end of the cubical
model to specified values. As shown in Fig. 1, both deformation and
volumetric responses during the tests are presented. Stress with respect
to strain, moment with respect to rotation angle and volume ratio are
calculated using the proposed method and an finite element method
in full-space. The nominal stress is calculated based on the elastic
force over the nodes on the right side face and the cross-sectional area
of the cuboid model. The strain is calculated based on the ratio of
tensile to length of the cuboid model. Compared with the results of
the finite element method in full-space, relative root mean square error
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Fig. 2. The visual results of the deformation tests. Displacement of the cubical model are rendered with color maps.
(RMSE) of the proposed method is 4.27%, 3.11%, 2.15%, and 2.63% for
strain–stress relationship, strain-volume relationship, rotation-moment
relationship, and rotation-volume relationship, respectively. Moreover,
there are no distinctive visual differences between cubical model de-
formation computed using the proposed method and the finite element
method in full-space, as shown in Fig. 2. The relative RMSE for displace-
ment of cubical model computed using the proposed method ranges
from 3.06% to 5.84%. Simulation results show that a high degree of
qualitative consistency between the proposed method and the finite
element method in full-space. Furthermore, as a non-linear material
model is incorporated, simulation results of soft tissue deformation act
non-linearly, as shown in Fig. 1. The cubical model (2 cm ∗ 2 cm
∗ 8 cm) contains 7273 vertices and 37 592 tetrahedrons. The material
parameters of the cubical model are set as follows: mass density 𝜌 =
500 kg∕m3, 𝜇1 = 0.5 kPa and 𝜇2 = 0.6 kPa. There are 250 sample handles
used to construct a sub-space and 3000 elements used to estimate the
internal elastic forces.

Next, in order to evaluate accuracy of the proposed model with
different choice of sub-space and cubature integrated scheme, we per-
form simulation tests on cubical model with different number of sample
handles and elements. As shown in Table 1, the number of sample
handles ranges from 74 (counts for 1.0% of all vertex) to 364 (counts
for 5.0% of all vertex), and the number of sample elements ranges from
1880 (counts for 5.0% of all elements) to 2820 (counts for 7.5% of
all elements). The relative RMSE of soft tissue deformation computed
using the proposed method with respect to the finite element method
in full-space are ranges from 21.82% to 2.29%. Simulation results show
that accuracy of the proposed method increases with increase in sample
handles. Furthermore, accuracy of the proposed method is lower as
6.25% of elements were incorporated into estimation of internal elastic
force. That is because the under-fitting of internal forces occurs when
the sampled elements are too few, while the over-fitting of internal
forces happens when the number of sampled elements is too high [37].
In order to better demonstrate accuracy of the proposed method, exper-
iments of soft tissue deformation with varying resolution are presented
in Appendix B. Overall, with proper selecting of sample handles and
elements, the proposed method achieves comparable accuracy to the
finite element method in full-space.

3.2. Efficiency comparison and analysis

To demonstrate the efficiency performance of the proposed method,
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we perform simulation tests on a set of soft tissue models with proper
selection of sample handles and elements. As shown in Table 2, geo-
metrical model with vertices (range from 3315 to 7273) and elements
(range from 15 810 to 170 487) are simulated with the proposed method.
In our proposed method, the computation time ranges from 6.07 ms to
19.31 ms, while in the finite element method, it ranges from 288.98 ms
to 688.83 ms in full space. Experiments show that the computation
time of the proposed method slightly increases as the number of
vertices increases. The proposed method achieves a higher degree of
computational efficiency compared to the finite element method in
full-space.

Next, to further assess the performance of the proposed method,
we compare the average one-step calculation time between our devel-
oped method and the finite element method in full-space. As shown
in Table 1, the cubical model with 7273 vertices and 37 592 tetra-
hedrons is used in the experimental test. Each time step requires
10.07 ms - 21.22 ms to calculate deformation of soft tissue for our
developed method with different selection of sample handles. We per-
form experiments using the finite element method in full-space, which
requires 688.83 ms in each time step. Our method achieves high degree
of efficiency with proper selection of sample handles and elements.
When number of sample elements is 2350 (counts for 6.25% of all
elements), the proposed method takes approximately 1∕54 to 1∕37
amount of computation time compared with the finite element method
in full-space.

In the proposed method, additional procedures, including computa-
tion of skinning and cubature weights, are needed before the simulation
of soft tissue deformation. Sampling-related algorithms, that signif-
icantly reduce the computation burdens of deformation simulation,
are incorporated into our developed method. Moreover, these weight
parameters can be reused and these additional procedures can be
conducted when constructing the geometrical mesh of soft tissue. These
features of the proposed method enable efficient simulation of soft
tissue deformation in online clinical scenes.

3.3. Dynamics of left ventricle with order reduction method

We implement the proposed order reduction method for the simu-
lation of left ventricle dynamics. The geometrical mesh of left ventricle
is reconstructed from cardiac magnetic resonance images. The left
ventricle deforms under the effect of myocardium contraction and
blood flow in a cardiac cycle. Finally, simulation results of left ventricle
deformation is presented.
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Table 1
Deformable objects and their computational results. The cubical model (2 cm ∗ 2 cm ∗ 8 cm) contains 7273
vertices and 37 592 tetrahedrons. There are 1880 (5.0%) to 2820 (7.5%) elements sampled for estimation
of internal elastic forces.

Number of
sample handles
(Sampling ratio)

Number of
sample elements
(Sampling ratio)

Relative
error
(%)

Computation
time
(ms)

74 (1.0%) 1880 (5.0%) 21.82 10.70
108 (1.5%) 1880 (5.0%) 15.80 12.00
150 (2.0%) 1880 (5.0%) 16.42 12.18
180 (2.5%) 1880 (5.0%) 16.11 12.73
220 (3.0%) 1880 (5.0%) 10.31 13.25
250 (3.5%) 1880 (5.0%) 5.59 13.87
290 (4.0%) 1880 (5.0%) 3.90 15.11
327 (4.5%) 1880 (5.0%) 3.38 15.42
364 (5.0%) 1880 (5.0%) 2.59 15.75

74 (1.0%) 2350 (6.25%) 8.60 12.82
108 (1.5%) 2350 (6.25%) 5.43 13.82
150 (2.0%) 2350 (6.25%) 4.90 14.08
180 (2.5%) 2350 (6.25%) 5.97 14.28
220 (3.0%) 2350 (6.25%) 4.44 15.48
250 (3.5%) 2350 (6.25%) 4.99 15.80
290 (4.0%) 2350 (6.25%) 3.31 16.69
327 (4.5%) 2350 (6.25%) 2.55 17.81
364 (5.0%) 2350 (6.25%) 2.29 18.41

74 (1.0%) 2820 (7.5%) 11.24 14.51
108 (1.5%) 2820 (7.5%) 6.17 15.45
150 (2.0%) 2820 (7.5%) 6.26 15.75
180 (2.5%) 2820 (7.5%) 9.66 16.17
220 (3.0%) 2820 (7.5%) 7.47 17.33
250 (3.5%) 2820 (7.5%) 4.05 18.01
290 (4.0%) 2820 (7.5%) 5.64 18.63
327 (4.5%) 2820 (7.5%) 3.16 19.49
364 (5.0%) 2820 (7.5%) 2.48 21.22
Table 2
Assessment of efficiency of the proposed method. A set of soft tissue models are incorporated.

Mesh vertices
(Sampling handles)

Mesh elements
(Sampling elements)

Relative error
(%)

Computation time of
finite element method
in full-space (ms)

Computation time of
our method
in sub-space (ms)

7273 (300) 170 487 (3000) 4.74 688.83 19.31
4265 (150) 21 009 (1500) 2.88 413.50 9.89
3266 (100) 15 924 (1000) 2.32 296.59 6.17
3315 (100) 15 810 (1000) 1.26 288.98 6.07
Fig. 3. Preprocess of the CMR images: (a) segmentation of the ventricular at the end-diastole. (b) the finite element mesh of a left ventricle geometry reconstructed from the
segmentation results. (c) the myocardial fiber orientation assigned using the LDRB algorithm [40]. (d) sampling handles in the simulation of left ventricle dynamics based on the
proposed order reduction method, which are used to construct the sub-space.
Data and preprocessing. Cardiac magnetic resonance (CMR) images
from the Automated Cardiac Diagnosis Challenge (ACDC) [41] are used
to construct the geometries of left ventricle. There are 17 777 nodes
and 70 481 tetrahedral elements in the left ventricle mesh. In order
to characterize anisotropic properties and active stress of myocardium,
orientation of fiber, sheet, and sheet normal are identified. The Laplace
Dirichlet Rule-Based (LDRB) algorithm proposed by Finsberg et al. [40]
is used to assign rule-based fibers of myocardium. The angle on endo-
cardium and epicardium are +60◦ and −60◦, respectively. Fig. 3 shows
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the segmentation results of CMR images, the three-dimensional mesh
reconstructed, the fibers of myocardium, and sampling handles of left
ventricle. Material parameters of the myocardium refers to the existed
work [42,43], as mass density 𝜌 = 1265 kg∕m3, 𝜇1 = 2.1 kPa and 𝜇2 = 0.

Simulation of left ventricle dynamics. In a cardiac cycle, the left ventricle
deforms under the effect of myocardium contraction and blood flow.
In the presented simulation of left ventricle dynamics, the entire car-
diac cycle is divided into four stage: isochoric contraction for systole;
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Fig. 4. Snap shots of the solutions (displacements and stress) of left ventricle dynamics in a cardiac cycle. The proposed order reduction method is used to govern the of left
ventricle dynamics, as described in Section 2.2. (a)–(d) refer to different stage of the cardiac cycle. Von Mises stress of myocardium during stage (b) are also presented.
ejection during systole; isochoric relaxation for diastole; and filling
during diastole, as followed [44]. As shown in Fig. 3(d), there are
300 sample handles were chosen to construct the sub-space. The sub-
space matrix is pre-computed and stored for simulation of left ventricle
dynamics. In the cubature sampling scheme, 3600 elements approxi-
mately equidistant distributed in the left ventricle mesh are chosen.
Finally, dynamics of left ventricle is simulated using the proposed
order reduction method. In each phase, the active forces generated by
myocardium in cubature sampling elements are calculated. The forces
generated by blood pressure are imposed on the surface are treated as
constant in the simulation step, which can be easily transformed into
the sub-space.

Simulation results and comparison. Simulation results of left ventricle
dynamics based on the proposed order reduction method are shown in
Fig. 4. In the first phase, cavity pressure increases due to active contrac-
tion of myocardium, while cavity volume remains constant. After that,
blood in left ventricle is pumped into the aortic, leading to decrease
the cavity volume. During isochoric diastole phase, myocardium starts
to relax and the cavity pressure decreases to minimum. During the
filling phase of diastole, blood fills left ventricle and both the cavity
pressure and volume increase slightly. It takes 21.81 ms to solve the
reduced order system equation in each simulation step. Conversely,
the simulation of left ventricle dynamics using finite element method
in full-space which takes 932.35 ms in each simulation step, which
achieves an improvement of approximately 43 times during online
stage. Difference between their results is negligible (with relative RMSE
of 2.4%). Efficient and accurate modeling of left ventricle dynamics
can be achieve based on the proposed method, which can be fur-
ther incorporated for clinical application for disease diagnosis and
treatment.

4. Discussion

In this paper, a WSC-integrated order reduction method for dynamic
modeling of soft tissue deformation is presented for engineering assis-
tive medical procedures. The deformation of soft tissue is transformed
into a sub-space with a weighted skinning integrated scheme, and
the internal elastic forces are estimated through a cubature integrated
scheme. The proposed method achieves efficient and accurate dynamic
modeling of soft tissue deformation because it takes advantage of
simplicity of the skinning weight integrated scheme and efficiency
7

of the cubature integrated scheme. When constructing the sub-space,
the skinning weight integrated scheme uses a radial basis functions
to calculate the weight of deformation between the handles and ver-
tices, hence building an approximate mapping between the sub-space
and the full-space. This integrated-based scheme is exempted from
pre-computing snapshots of soft tissue deformation in full-space and
consumes less computational resources. In addition, another map-
ping methods between handles and vertices, such as projective skin-
ning [45] and neural network [46], can also be incorporated into
constructing the sub-space in the presented work. The handle-based
reduced order model is one of the effective ways to construct a low
order subspace, which has been widely used in the field of Computer
Graphics, including rig space dynamics [47], frame-based elastic mod-
els [29], cage-based deformations [48], and other handle-based meth-
ods
[28–30,49]. The key ideas behind these methods for subspace construc-
tion lie on the following two aspects: (1) find proper transformation
between displacement of handles and deformation of soft objects; and
(2) govern dynamic of soft objects within low order space. For example,
in hyper-reduced projective dynamics [30], a subspace is created from
skinning weights with RBFs and a constraint projection fitting method
is incorporated to reduce computation expense, which is similar to
our presented work. In complementary dynamics [49], displacements
of handles are transformed into deformation of soft objects, while
additional complementary displacements are calculated based on in-
herent dynamics mechanics of soft objects. These methods have been
demonstrated to be effective ways to reduce order of dynamic models
of soft tissue, which could be used in medical simulation in future. The
other aspects of our proposed method is estimating the internal elastic
forces. The cubature integrated scheme is incorporated. It achieves
efficient estimation of internal elastic forces of soft tissue in the online
stage. The proposed method is computational efficient both in the
online and offline stage, which makes it suitable for online clinical
scenes. Moreover, compared with the low-order mathematical model
of soft tissue organs [50,51], deformation of soft tissue with precise
anatomical details can be characterized based on the proposed method.
It is suitable for dynamic modeling of soft tissue organs that presents
complex physiology and physics aspects.

In the dynamic modeling of soft tissue deformation, accuracy and
efficiency are the two major aspects of performance and assessment
metrics [52,53]. Various choices of material model (linear elastic vs.
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hyper-elastic), spatial discretization and time integration schemes (ex-
plicit integration vs. implicit integration) leads to different performance
of accuracy and efficiency [54]. Finite element method with hyper-
elastic material model and implicit time integration scheme presents
relative high degree of accuracy, but relative low degree of efficiency,
which is usually applied in medical simulation [55,56]. In this work,
we chose finite element method with a hyper-elastic material model
and an implicit time integration scheme as benchmark, and compared
it to our proposed method. The implementation and source code [38]
of the finite element method, as well as its verification results [39],
have been reported in existing works. The implicit time integration
scheme is based on the Backward Euler method and is unconditionally
stable [35,36]. An iterative method is employed to solve the underlying
system equations resulting from the deformation model. The iterative
process terminates when the residual decreases to a desired threshold,
or after exceeding a maximum number of iterations [35,57]. There are
numerous works [14,15,17] and open-source codes [13,38,58] which
use the finite element method with implicit time integration schemes to
achieve accurate simulation of soft tissue deformation. Boundary con-
ditions are usually applied by prescribing displacements on the selected
vertices in the end of each simulation steps. Experimental results show
that the proposed method achieves comparable accuracy to the finite
element methods and real-time performance. Moreover, compared with
existing order reduction methods, our proposed method does not re-
quire pre-computation of snapshots of soft tissue deformation, which is
a challenging task in medical scene.

Various kinds of materials models have been proposed to charac-
terize constitutive behaviors of soft tissue, including Ogden material
model, Mooney–Rivlin material model, Neo-Hookean material model,
etc [59,60]. More experiments with different material models have
been performed to demonstrate the flexibility of the proposed method,
as shown in Appendix A. However, for perfectly incompressible and
nearly incompressible continuum (with high Poisson’s ratio), volumet-
ric locking [61] can occur in simulation of deformation using a finite
element method. In the presented work, we focus on order reduction
method for soft tissue simulation, and countermeasures against vol-
umetric locking are not take into account. Experimental tests were
conducted with different mesh resolutions, as shown in Appendix B.
Experiment results show a small variation of the volume ratio and no
significance decrease in stiffness as the meshes were refined. Existing
works [62] also report using Poisson ratios of no more than 0.45
in order to alleviate locking artifacts. However, limitations still exist
in the proposed method due to disregarding the volumetric locking
phenomenon. Incompressibility constraints to the tetrahedral element
would result in an increase of stiffness, especially for continuum with
high Poisson’s ratio. Convergence studies on the mesh resolution may
reveal an increase in accuracy and decrease in numerical stiffness,
yet locking may still occur [63]. On the other hand, small Poisson’s
ratio could alleviate locking artifacts at the cost of losing physical
accuracy [64]. Countermeasures are expected to circumvent volumetric
locking issue thoroughly [63]. In the proposed method, the construc-
tion of subspace and estimation of internal elastic force are independent
of the spatial discretization scheme. A specifically designed tetrahedral
element [65,66] can be employed to avoid the volume locking issue.

However, the proposed order reduction method for dynamic mod-
eling of soft tissue deformation has some limitations that should be
investigated further as follows: (a) how to optimize the algorithm
of choosing the sampling handles and elements. An iterative search
algorithm is used in our work to find the sampling handles and elements
that are approximately equidistant distributed in the geometrical mesh
of soft tissue. However, the accuracy of the proposed method drops
due to over-fitting when 7.5% of the elements are selected, compared
to 6.25%. An improved algorithm might be investigated to increase
the accuracy and stability of the simulation. Several works have been
proposed to generate handles for the handle-based order reduction
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method [67,68]. These works may provide an opportunity to optimally d
choose the sampling handles and elements during construction of geo-
metrical mesh of the soft tissue. (b) countermeasures against volumetric
locking. There are numerous works on finite element methods [64,
69,70] and order reduction methods [19,71], in which the volumetric
locking issue is addressed. In this presented work, the simulation results
of our method and the finite element method do not consider the issue
of volumetric locking. Therefore, further investigation on volumetric
locking within order reduction methods should be conducted in future
works.
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Appendix A. Experiments of soft tissue deformation with different
material models

In computational models of soft tissue deformation, there are lot of
material models are used to characterize elastic response to soft tissues,
including Ogden model, Mooney–Rivlin model, Neo-Hookean model,
etc. In this paper, a new order reduction method was proposed for
dynamic modeling of soft tissue deformation. In the developed method,
construction of subspace and estimation of internal elastic force are
independent of the material models, which means that the method is
compatible with different soft material models. In the presented work,
Mooney–Rivlin model is picked as an example. A variety of material
models are used to demonstrate flexibility of the proposed method.

In the presented simulation experiments, a cubical model (2 cm
∗ 2 cm ∗ 8 cm) contains 7273 vertices and 37 592 tetrahedrons are
incorporated. There are 250 sample handles used to construct a sub-
space and 3000 elements used to estimate the internal elastic forces.
Both the Ogden model, Mooney–Rivlin model, Neo-Hookean model
and linear elastic model are incorporated. The material parameters of
the cubical model are set as follows: mass density 𝜌 = 500 kg∕m3,
𝜇1 = 0.5 kPa and 𝜇2 = 0.6 kPa for Mooney–Rivlin model; mass density
𝜌 = 500 kg∕m3, Young’s modulus of 108 N∕m2, and Poisson ratio of 0.4
for Neo-Hookean model; mass density 𝜌 = 500 kg∕m3, Young’s modulus
of 108 N∕m2, and Poisson ratio of 0.4 for StVK model. Simulation
esults are as shown in Fig. 5. Simulation results with different models

emonstrate the flexibility of the proposed method.
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Fig. 5. The visual results of the deformation tests with different material models. Displacement of the cubical model are rendered with color maps.
Table 3
Deformable objects with varying resolution and their computational results. The cubical model (2 cm ∗ 2 cm ∗ 8 cm) contains 2519 vertices and 12 499 tetrahedrons for low
resolution, 9284 vertices and 43 517 tetrahedrons for high resolution. The relative RMSE of soft tissue deformation computed using the proposed method with respect to the finite
element method in full-space.

Low resolution High resolution

Number of
sample handles
(Sampling ratio)

Number of
sample elements
(Sampling ratio)

Relative
error
(%)

Computation
time
(ms)

Number of
sample handles
(Sampling ratio)

Number of
sample elements
(Sampling ratio)

Relative
error
(%)

Computation
time
(ms)

50 (2.0%) 650 (5.0%) 13.95 8.31 185 (2.0%) 2176 (5.0%) 11.05 28.09
63 (2.5%) 650 (5.0%) 9.42 8.12 232 (2.5%) 2176 (5.0%) 11.73 39.82
75 (3.0%) 650 (5.0%) 10.05 9.11 278 (3.0%) 2176 (5.0%) 7.30 48.38
88 (3.5%) 650 (5.0%) 7.28 10.74 325 (3.5%) 2176 (5.0%) 5.33 37.90
101 (4.0%) 650 (5.0%) 5.03 11.84 371 (4.0%) 2176 (5.0%) 3.70 43.35
113 (4.5%) 650 (5.0%) 3.96 10.92 418 (4.5%) 2176 (5.0%) 2.55 48.48
126 (5.0%) 650 (5.0%) 4.92 12.57 462 (5.0%) 2176 (5.0%) 2.77 63.41

50 (2.0%) 815 (6.25%) 6.99 9.92 185 (2.0%) 2720 (6.25%) 9.57 49.43
63 (2.5%) 815 (6.25%) 5.27 10.30 232 (2.5%) 2720 (6.25%) 8.98 42.00
75 (3.0%) 815 (6.25%) 7.78 10.47 278 (3.0%) 2720 (6.25%) 6.77 46.38
88 (3.5%) 815 (6.25%) 4.68 12.13 325 (3.5%) 2720 (6.25%) 4.74 51.52
101 (4.0%) 815 (6.25%) 1.93 12.86 371 (4.0%) 2720 (6.25%) 3.92 55.35
113 (4.5%) 815 (6.25%) 2.66 13.85 418 (4.5%) 2720 (6.25%) 2.35 52.66
126 (5.0%) 815 (6.25%) 2.10 15.28 462 (5.0%) 2720 (6.25%) 2.89 64.34

50 (2.0%) 875 (7.5%) 5.72 9.29 185 (2.0%) 3264 (7.5%) 9.53 44.06
63 (2.5%) 875 (7.5%) 4.59 10.81 232 (2.5%) 3264 (7.5%) 7.35 39.70
75 (3.0%) 875 (7.5%) 4.33 10.76 278 (3.0%) 3264 (7.5%) 6.67 46.17
88 (3.5%) 875 (7.5%) 2.94 11.36 325 (3.5%) 3264 (7.5%) 4.11 57.66
101 (4.0%) 875 (7.5%) 2.26 12.82 371 (4.0%) 3264 (7.5%) 3.04 63.88
113 (4.5%) 875 (7.5%) 3.87 13.44 418 (4.5%) 3264 (7.5%) 2.51 65.38
126 (5.0%) 875 (7.5%) 2.27 14.45 462 (5.0%) 3264 (7.5%) 2.06 91.60
Appendix B. Experiments of soft tissue deformation with varying
resolution

The cubical model (2 cm ∗ 2 cm ∗ 8 cm) in these experimental tests
is with the same size as the one in Section 3.1, but with a different
resolution. Uniaxial tensile is conducted on the cubical model and
deformation during the tests is computed and compared with the finite
element method in full-space. As shown in Table 3, experimental results
show that the proposed method achieves a relative high degree of
accuracy and real-time performance. Compared with simulation results
in Table 1, it achieves a similar degree of accuracy with varying
resolution. In the experimental results of the finite element method
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with different mesh resolution, the nominal stresses regard to strain
of 0.3 are 0.371 kPa (low resolution), 0.370 kPa (medium resolution)
and 0.368 kPa (high resolution), and the volume ratios are 1.032
(low resolution), 1.031 (medium resolution) and 1.031 (high resolu-
tion), respectively. In the experimental results of the proposed order
reduction method with different mesh resolution (sampling ratio for
handles and elements are 3.0% and 6.25%, respectively), the nominal
stresses regard to strain of 0.3 are 0.367 kPa (low resolution), 0.366 kPa
(medium resolution) and 0.363 kPa (high resolution), and the volume
ratios are 1.054 (low resolution), 1.055 (medium resolution) and 1.055
(high resolution), respectively. A small variation of the volume ratio
and no significance decrease in stiffness were observed. In simulation
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of soft tissue deformation for clinical scene, geometrical models with
high resolution can characterize anatomical details of organs better,
but require more computation expense. Trade-offs in terms of speed
and details should be made when constructing the geometrical model
and low order space for simulation.
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